步子百科步子百科

蝴蝶定理

蝴蝶定理(Butterflytheorem),蝴蝶定理是蝴蝶定理古典欧式平面几何的最精彩的结果之一。这个命题最早出现在1815年,蝴蝶定理而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,蝴蝶定理由于其几何图形形象奇特,蝴蝶定理貌似蝴蝶,蝴蝶定理便以此命名。蝴蝶定理

蝴蝶定理(Butterfly Theorem):设M为圆内弦PQ的蝴蝶定理中点,过M作弦AB和CD。蝴蝶定理射影几何里面关于投影变换有一个重要结论,蝴蝶定理对于平面上任意两个圆锥曲线C1,C2.任意指定C1内部一个点A1和C1上面一个点B1,另外任意指定C2内部一个点A2和C2上面一个点B2,存在一个唯一投影变换将曲线C1变换到C2而且A1变换到A2,B1变换到B2.

中文名:蝴蝶定理

外文名:Butterfly Theorem

表达式:XM=MY

提出者:W.G.霍纳

提出时间:1815年

别称:蝴蝶原理

应用学科:科学,蝴蝶定理数学,蝴蝶定理物理等

适用领域范围:理科,蝴蝶定理几何

发展简史

蝴蝶定理的蝴蝶定理英文是Butterfly Theorem,蝴蝶定理是蝴蝶定理古典欧式平面几何最杰出的结果之一。而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1994年2月号,题目的图形就像一只蝴蝶.蝴蝶定理作为一道著名的平面几何问题,有人赞誉它为欧式几何园地里的“一颗生机勃勃的常青树”。蝴蝶定理最先作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》,中同时刊登了蝴蝶定理的两个证明方法.其中一个是英国著名的自学成才的数学家霍纳的解法.霍纳受过中等教育,18岁时担任其母校校长.关于这个定理的证法多的不胜枚举,至今仍被数学热爱者研究。[2]

定理定义

几何学史中一个有名的定理.过一圆的弦的中点引任意两条弦和,连结和,交弦于,则.

验证推导

霍纳证法

图示1

过作 ,垂足为 ,

连接

可知 (同弧所对的圆周角相等)

根据垂径定理得:

是的中点所以(垂径定理逆定理)

四点共圆(对角互补的四边形共圆 ) ,

同理, 四点共圆

(同弧所对的圆周角相等)

(同弧所对的圆周角相等)

在 和

帕斯卡证法

图示2

连接并延长分别交圆于连接交于 连接、 由帕斯卡定理得:共线 为 中点

又 为 直径

共圆, 共圆

定理推广

该定理实际上是射影几何中一个定理的特殊情况,有多种推广:

蝴蝶定理的圆外形式:

如图,延长圆中两条弦交于一点,过做垂线,垂线与的延长线交于,则可得出(证明方法可参考蝴蝶定理的证法2、3、4)

图示2

1.在圆锥曲线中

通过射影几何,我们可以非常容易的将蝴蝶定理推广到普通的任意圆锥曲线(包括椭圆,双曲线,抛物线,甚至退化到两条相交直线的情况)。

圆锥曲线上弦的中点为,过点任作两弦,弦分别交于,则为之中点。

而通过投影变换可以非常容易证明这个定理。

射影几何里面关于投影变换有一个重要结论,对于平面上任意两个圆锥曲线任意指定内部一个点和上面一个点,另外任意指定内部一个点和上面一个点,存在唯一一个投影变换将曲线变换到而且变换到,变换到.

由此对于本题,我们可以通过投影变换将变换成一个圆,而将弦的中点变换成这个圆的圆心。

在此变换以后,弦都是圆的直径而且四边形是圆内接矩形,也是一条直径,由对称性显然得出投影变换后为的中点。又因为变换前后都是线段的中点,我们可以得出在直线上这个变换是仿射变换,所以变换前也是的中点。

定理意义

蝴蝶定理是古典欧式平面几何的最精彩的结果之一。这个定理的证法不胜枚举,至今仍然被数学热爱者研究,在考试中时有出现各种变形。[1]

参考资料

1.·

2.·